Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36902872

RESUMO

Rare earth-doped zinc oxide (ZnO:RE) systems are attractive for future optoelectronic devices such as phosphors, displays, and LEDs with emission in the visible spectral range, working even in a radiation-intense environment. The technology of these systems is currently under development, opening up new fields of application due to the low-cost production. Ion implantation is a very promising technique to incorporate rare-earth dopants into ZnO. However, the ballistic nature of this process makes the use of annealing essential. The selection of implantation parameters, as well as post-implantation annealing, turns out to be non-trivial because they determine the luminous efficiency of the ZnO:RE system. This paper presents a comprehensive study of the optimal implantation and annealing conditions, ensuring the most efficient luminescence of RE3+ ions in the ZnO matrix. Deep and shallow implantations, implantations performed at high and room temperature with various fluencies, as well as a range of post-RT implantation annealing processes are tested: rapid thermal annealing (minute duration) under different temperatures, times, and atmospheres (O2, N2, and Ar), flash lamp annealing (millisecond duration) and pulse plasma annealing (microsecond duration). It is shown that the highest luminescence efficiency of RE3+ is obtained for the shallow implantation at RT with the optimal fluence of 1.0 × 1015 RE ions/cm2 followed by a 10 min annealing in oxygen at 800 °C, and the light emission from such a ZnO:RE system is so bright that can be observed with the naked eye.

2.
Materials (Basel) ; 15(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35629448

RESUMO

The paper presents the effect of nitrogen ion implantation on the tool life of the tools commonly used in the furniture industry for drilling particleboards. Nitrogen ions with different accelerating voltages of 25, 40, 55, and 70 kV and a fluence of 5 × 1017 cm-2 were implanted into the surface of commercially available high-speed steel (HSS) drills, using the implanters without mass-separated ion beams. The tests were carried out in a computerized numerical control (CNC) machining center used in the furniture industry. Based on the measurements of the direct tool wear indicator (W), the drill wear curves were determined and the relative tool life index, standard deviation, coefficient of variation, and the implantation quality index of tool life were calculated. The studies have shown that the modification of the drill surface layer by the nitrogen ion implantation process increases the tool life. The obtained results allow the research to be the continued in a wider scope.

3.
Materials (Basel) ; 14(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418938

RESUMO

The paper is dedicated to the lifetime prolongation of the tools designed for deep-hole drilling. Among available methods, an ion implantation process was used to improve the durability of tungsten carbide (WC)-Co guide pads. Nitrogen fluencies of 3 × 1017 cm-2, 4 × 1017 cm-2 and 5 × 1017 cm-2 were applied, and scanning electron microscope (SEM) observations, energy dispersive spectroscopy (EDS) analyses, X-ray photoelectron spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) measurements were performed for both nonimplanted and implanted tools. The durability tests of nonimplanted and the modified tools were performed in industrial conditions. The durability of implanted guide pads was above 2.5 times more than nonimplanted ones in the best case, presumably due to the presence of a carbon-rich layer and extremely hard tungsten nitrides. The achieved effect may be attributed to the dissociation of tungsten carbide phase and to the lubrication effect. The latter was due to the presence of pure carbon layer with a thickness of a few dozen nanometers. Notably, this layer was formed at a temperature of 200 °C, much smaller than in previously reported research, which makes the findings even more valuable from economic and environmental perspectives.

4.
Appl Radiat Isot ; 124: 124-131, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28384503

RESUMO

The method of 100Mo metallic target preparation for production of 99mTc by proton irradiation in 100Mo(p,2n)99mTc reaction was demonstrated. For this purpose, pressing of molybdenum powder into pellets and their subsequent sintering in reductive atmosphere were applied. The influence of parameters such as molybdenum mass and time of both pressing and sintering on the 100Mo target durability was investigated. Under the optimized conditions, 100Mo metallic pellet targets with density of 9.95±0.06g/cm3 were obtained. Morphology and structure of pressed pellets before and after sintering were studied by using standard optical microscope and Scanning Electron Microscope (SEM). Nanoindentation technique was used to investigate the mechanical properties such as nanohardness and Young modulus. Prepared 100Mo pellets were successfully irradiated with protons and 99mTc was efficiently isolated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...